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The information provided in this white paper pertaining to xx network SEZC ("Praxxis" or 
the "Company"), the xx Coin (the “Coins”), its business assets, strategy and operations is 
for general informational purposes only and is not a formal offer to sell or a solicitation of 
an offer to buy any Coins, securities, options, futures, or other derivatives related to 
securities in any jurisdiction and its content is not prescribed by securities laws. 
Information contained in this white paper should not be relied upon as advice to buy or sell 
or hold Coins or securities or as an offer to sell Coins. This presentation does not take into 
account nor does it provide any tax, legal or investment advice or opinion regarding the 
specific investment objectives or financial situation of any person. While the information 
in this presentation is believed to be accurate and reliable, Praxxis and its agents, advisors, 
directors, officers, employees and shareholders make no representation or warranties, 
expressed or implied, as to the accuracy of such information and Praxxis expressly 
disclaims any and all liability that may be based on such information or errors or 
omissions thereof. Praxxis reserves the right to amend or replace the information 
contained herein, in part or entirely, at any time, and undertakes no obligation to provide 
the recipient with access to the amended information or to notify the recipient thereof.

Neither we nor any of our representatives shall have any liability whatsoever, under 
contract, tort, trust or otherwise, to you or any person resulting from the use of the 
information in this presentation by you or any of your representatives or for omissions from 
the information in this presentation. Additionally, the Company undertakes no obligation 
to comment on the expectations of, or statements made by, third parties in respect of the 
matters discussed in this presentation.

This whitepaper contains forward looking statements, including among other things, 
statements concerning the distribution of xx Coins, and other statements identified by 
words such as “could,” “expects,” “intends,” “may,” “plans,” “potential,” “should,” “will,” 
“would,” or similar expressions and the negatives of those terms. Forward-looking 
statements are not promises or guarantees of future performance, and are subject to a 
variety of risks and uncertainties, many of which are beyond our control. Actual results 
could differ materially from those anticipated in such forward-looking statements as a 
result of various risks and uncertainties, which include, without limitation, market risks 
and uncertainties and the satisfaction of losing conditions for a distribution of xx Coins. 
Forward-looking statements speak only as of the date hereof, and, except as required by 
law, Praxxis undertakes no obligation to update or revise these forward-looking 
statements.
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1 INTRODUCTION

Since the introduction of Bitcoin [16], many have attempted to develop a decentralized platform capable 
of providing a global-scale payments system outside of the control of the institutions of society. However, 
these platforms are burdened by large fees, slow payment confirmation, and high energy consumption, 
preventing the necessary user adoption to fully replace centralized systems. No current blockchain 
platform simultaneously achieves decentralization, speed, privacy, and long-term security against threats 
such as quantum computers.

The Praxxis Technical Paper introduces, the xx blockchain, a new approach providing an unprecedented 
combination of speed, security and scalability. The core component of a decentralized blockchain is the 
consensus algorithm that facilitates agreement between nodes in the network. The xx blockchain relies 
on a novel quantum-secure consensus algorithm, xxBFT (also referred to as xx consensus), that achieves 
linear authenticator complexity and single block finality. xxBFT is scalable to thousands of nodes while 
maintaining low block latency, high performance and constant-sized proofs of finality. xxBFT operates 
withlow energy consumption and is truly egalitarian, granting every node equal operating time and 
rewards.

The xx blockchain, supported by the xxBFT consensus algorithm, sets out to create the first quantum-secure 
and truly decentralized platform providing a global-scale payments system and restoring the balance of 
power between large organizations and digital citizens.

In this technical paper, we start by setting the goals and assumptions for the xx blockchain, and present 
its key features and novelties. We will then describe, in detail, the operation of the xxBFT consensus 
algorithm, followed by an examination of its properties. This will include a brief description of how 
to securely initialize the xx blockchain network. Finally, we offer an overview of related work in the 
blockchain space, and summarize the key innovations presented in this document.
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2 GOALS & ASSUMPTIONS

The xxBFT consensus algorithm aims to achieve linear authenticator complexity, while guaranteeing
safety under asynchrony and liveness under partial synchrony. Furthermore, xxBFT should provide single
block finality and achieve optimistic responsiveness during optimal network conditions. xxBFT and the xx
blockchain have been designed to achieve the following goals:

• Safety Goal: No two correct nodes commit to different blocks for the same round.
• Liveness Goal: All correct nodes eventually commit a block that updates the ledger.
• Validity Goal: The probability that a correct node commits a block containing an invalid transaction
is negligible.

• Optimistic Responsiveness Goal: A correct leader, under perfect network synchrony, must be able to
drive consensus to a decision as fast as allowed by actual message delays.

ASSUMPTIONS

We assume that all the nodes in the network have authenticated channels, which were previously 
established in a quantum-secure manner during network initialization. Furthermore, nodes don’t rely on 
any standard public key cryptographic primitives which are vulnerable to quantum computing. In pursuit 
of this, all signatures are hash-based and all communications are encrypted using symmetric ciphers.

The network operates under the standard Byzantine Fault Tolerant (BFT) assumption, where byzantine 
nodes may fail arbitrarily or behave maliciously, trying to subvert the network. We assume that the number 
of nodes exhibiting byzantine behavior is at most 1/3 of the network. In distributed systems literature this 
assumption is expressed as: in order to tolerate f byzantine nodes, the size of the network must be at least 
n = 3f + 1 [17].

To model the network we use the partial synchrony model as described in [7], which states that there is 
an unknown Global Stabilization Time (GST), after which two honest nodes are able to communicate in a 
known bounded time. Moreover, we assume that the network may fail to deliver messages, delay them, 
duplicate them, or even deliver them out of order.

ADVERSARIAL MODEL

We assume a global adversary capable of simultaneously coordinating all malicious nodes in the network. 
The adversary can isolate honest nodes from the rest of the network, provided that the BFT assumption 
is not violated. This adversary can also view the state of every honest node at any time and can instantly 
modify the state of all adversarial nodes accordingly. The goal of the adversary is to utilize all the 
capabilities at its disposal to cause the most damage to the decentralized platform.

The adversary is able to eavesdrop, forward, and delete messages between honest nodes. However, due 
to the use of authenticated channels, the adversary is not able to modify, replay, or inject new messages, 
without detection. Furthermore, the adversary is computationally bounded, but has access to quantum 
computing capabilities and can break all the cryptographic primitives that rely on the hidden subgroup 
problem, such as the (Elliptic Curve) Discrete Logarithm Problem and the factorization of large primes. 
Finally, the adversary is unable to subvert symmetric primitives as these are easily adaptable to resist 
quantum attacks.
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3 OVERVIEW

3

We propose a novel ”bi-stable” leader-based BFT consensus framework facilitating a binary decision using 
”optimistic path” and ”fallback” procedures. When the network is strongly synchronous, an ”optimistic 
path” aims to achieve responsive agreement on a correct leader’s block proposal while guaranteeing safety. 
However, when byzantine behavior causes the network to start losing synchrony, consensus will rely on 
a ”fallback” mechanism, which maintains safety under asynchrony but guarantees liveness under partial 
synchrony, after GST.

This framework is based on five primary approaches that enable xxBFT to achieve its primary performance 
goals while remaining quantum-secure:

NETWORK INITIALIZATION

Network initialization is a process through which the initial nodes establish symmetric keys with each 
other, collectively generate an unmanipulatable random seed, and sign the genesis block. We propose 
one novel mechanism to achieve this using a physical, but virtually auditable, event. Prior to this event, 
nodes are required to commit to a tree of hash values, publishing the images of each value but keeping the 
preimages private.

Each node is responsible for bringing a number of these preimages to the event. Some of these preimages 
are shared with other nodes in attendance in order to generate symmetric keys used for quantum-secure 
authenticated communication channels. Another set of these preimages are combined with preimages 
from all other attendees to collectively generate an unmanipulatable random value that will be used to 
seed the randomness generated for every subsequent block. Finally, the attending nodes all sign the 
genesis block of the network, locking in the random seed and the initial network membership and coin 
tree.

COMMITTED RANDOMNESS

Committed randomness is a mechanism to generate unmanipulatable randomness every block using a 
publicly verifiable random value that is published by the block producer (BP). This published random value 
is hashed with the chain of prior randoms extending back to the random seed generated during Network 
initialization. As a result, a new network random is contained on every block and can be used to seed 
the selection algorithms, for example to choose the BP and execute endorser sampling for each round of 
consensus.

Since the randoms have been committed to in advance, the value revealed by the BP cannot be modified 
because it is verifiable by all nodes in the network, and would be rejected otherwise. Therefore, a malicious 
BP cannot influence the network random in order to gain any advantage, for example by finding a value that 
always selects malicious BPs. Hence, the network random is an unmanipulatable value and can be safely 
used to prevent any manipulation of the selection algorithms.

We refer to the network random as being probabilistically unpredictable. This property results from 
the chaining of BP random reveals, and it prevents an organized attack on the BP or endorsers of 
subsequent consensus rounds. The current BP will always know the upcoming leader before the rest of 
the network, allowing a malicious leader to know ahead of time if the next BP is also malicious. If this 
happens, the adversary can predict scheduling two rounds in advance, instead of one. Given the BFT 
assumption, the probability of a malicious node becoming the BP is at most 1 . This way, the probability
of n consecutive rounds with a malicious leader is given by 1

3

n
, which is an exponential decrease. This

probability distribution ensures that an honest node is highly likely to be selected as the BP every few
rounds, releasing a random unknown to the adversary and re-establishing the unpredictability of the
network random.
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ENDORSER SAMPLING

Endorser sampling is an algorithm that selects a constant-sized, randomly chosen subset of nodes from 
the network to act as endorsers for each round of consensus. These endorsers are the only nodes in 
the network responsible for validating and endorsing the block of transactions. This provides a major 
advantage when compared to classical BFT consensus algorithms: most nodes in the network are not 
required to receive and validate transactions, allowing them to preserve bandwidth and computational 
power to execute tasks other than consensus.

The selection of the endorser sample can be subject to attacks if not carefully designed. For example, if 
the selection algorithm depends on some value contained in a block, a malicious leader can influence the 
selection of the sampled nodes by ”mining” the block until a favorable sample containing an overwhelming 
number of malicious nodes is found. If this happens, the malicious endorsers can try to subvert the network 
by sending out fake endorsements.

In a decentralized network, the endorser sampling approach can only be made safe if the algorithm that 
selects the endorsers is truly unpredictable and unmanipulatable. In xxBFT this may be achieved using the 
committed randomness generated in a prior round.

EFFICIENT FALLBACK
Anytime malicious behavior or an unreliable network disrupts a round of consensus, a fallback mechanism 
is triggered. While nearly all BFT consensus mechanisms have some manner of fallback, they all generally 
suffer from increased communication or authenticator complexity as compared to the “optimistic path”. 
xxBFT is distinguished in that authenticator complexity remains linear even when a fallback is triggered.

There are generally two types of fallback in xxBFT depending on how the round fails. If the block producer 
(BP) is unresponsive or proposes an invalid block then a fallback to produce an empty block is triggered, 
selecting a new BP for the next round. If the network fails to receive a quorum of endorsements from the 
endorser sample then a separate fallback attempts to commit the same block by selecting a new endorser 
sample.

QUANTUM-SECURE GROUP ENDORSEMENTS

The combination of endorser sampling and committed randomness can be used to create a non 
quantum-secure consensus algorithm, relying on, for example, standard elliptic curve public key 
cryptography and BLS signature aggregation. However, the consensus algorithm utilized in the xx 
blockchain must be quantum-secure. There are different types of quantum-secure signature schemes, for 
example, lattice-based, code-based, super-singular isogenies and hash-based. Of these, we believe that 
hash-based signatures, such as the Winternitz OTS+ scheme [11], provide properties of interest to the 
design of the xxBFT consensus algorithm. The size of these signatures is acceptable when compared to 
other quantum-secure schemes, even if much larger than standard public key cryptography signatures.

However, since no signature aggregation is possible using WOTS+, the size of proof of finality certificates, 
which are produced by xxBFT to prove agreement on a block, would still be very large. This is a problem 
for users that need to receive those proofs using mobile devices. The xxBFT algorithm must then be able 
to produce compact proofs of block finality.

Hence, we introduce a hash-based proof designed to allow xxBFT to issue a compact proof of finality 
containing the results of a consensus round. In our scheme, nodes issue compact one-time signatures that 
can be probabilistically verified and, as a group, provide a final quantum-secure state.

The scheme is parameterized by the number of nodes that are required to participate and the desired 
security level. Based on the parameters, nodes create a series of separate random bit strings to sign a 
specific number of bytes and each corresponding checksum. Unlike the WOTS+ scheme, each individual 
byte has a corresponding checksum ladder.

An important distinguishing factor of our construction is that each node in the set signs a sequence of bytes
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tied to their own secret key elements, as opposed to having the entire set sign different parts of one same
hash. Once they have done so, other nodes in the network can check the collective proof.
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4 xxBFT

We propose xxBFT, the first quantum-secure BFT consensus algorithm with linear authenticator 
complexity in block producing rounds. We start by describing how xxBFT combines the three previously 
presented novelties in order to build an optimized optimistic path. We then outline the fallback procedure, 
which allows consensus to operate correctly even if the optimistic path fails to achieve agreement.

OPTIMISTIC PATH
The optimistic path leverages the unmanipulatable selection of an endorser sample in order to quickly and 
safely achieve network agreement on the block proposal. Furthermore, it utilizes quantum-secure group 
endorsements t o provide compact proofs of block finality. I t consists of f our phases: propose, validate, 
confirm and commit, as shown i n Figure 3.

▷ PROPOSE

Every block is first constructed by the BP who is chosen randomly and unmanipulatably by a prior leader’s 
committed random. The BP verifies all the transactions and their signatures, organizes the transactions 
into a Merkle tree, and then constructs and signs both a transactionBatch and a smaller stateUpdate. 
The stateUpdate verifiably contains all the same transactions as the transactionBatch but, to preserve 
network bandwidth, does not include the large quantum-secure signatures of each transaction. The block 
is composed by: the blockHeader, the committed random, and the Merkle roots of the transactionBatch 
and stateUpdate. The blockHeader will simply contain the block number, the hash of the previous block, 
and the new network random. Figure 1 shows the structure of the block.

Figure 1: Block Structure Figure 2: Empty Block Structure

The BP gossips the block proposal to the network, consisting of the block and the stateUpdate. The
network random contained in the block is an accumulation of all the randomness that has been revealed
in the lifetime of the network. One simpleway of performing this accumulation is to hash the current BP’s
committed random with the previous round’s network random. Each node in the network verifies the
BP’s committed random and network random contained in the block, allowing them to deterministically
compute the endorser set, containing a constant number of nodes, say 100. In parallel, the BP gossips the
transactionBatch only to the endorsers.

▷ VALIDATE

The selected endorsers know about their role upon receiving the block proposal from the BP. Then, after
receiving the transactionBatch, endorsers validate all the transactions against the current state of the
ledger. If all are valid, endorsers sign the block hash using a WOTS+ signature and broadcast it to the
network. Otherwise, if a single bad transaction is detected, the BP is deemed malicious and endorsers
can broadcast the transaction and a Merkle proof to the network. Together with the signed block by the
BP, this information is sufficient to prove to any node that the BP acted maliciously. This allows nodes to
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abandon the optimistic path and start operating on the fallback procedure.

▷ CONFIRM

All nodes in the network wait to receive signatures from a threshold of the endorsers, say 65%, allowing
them to form a Quorum Certificate (QC). This is a data structure that expresses the combined opinion of
theendorser set. An endorsementQC guarantees,withoverwhelmingprobability, that all the transactions
are valid. Once a node receives an endorsementQC it can be confident that the block is valid, without
needing to verify any transactions. The node then creates a confirm signature and gossips it back to the
endorsers, letting them know that it has seen an endorsementQC .

All endorsers wait to receive a 2f + 1 network majority quorum of confirm signatures on the block
proposal, forming a confirmQC . This allows endorsers to be certain that no forks will occur and that the
network is ready to commit the block. Endorsers will then broadcast to the network a compact commit

endorsement on the block hash, which certifies that it should be committed.

▷ COMMIT

Each commit endorsement on its own is insecure, but a threshold of them certifying the same block

hash, form an unforgeable, quantum-secure group endorsement. Once any node in the network has
received this threshold of commit endorsements, it can gather them into a commitQC and the block is
considered to have reachedfinality. Using this novel cryptographic structure, xxBFT can provide compact,
constant-sized and quantum-secure proofs of block finality.

Figure 3: Optimistic Path StateMachine Diagram
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FALLBACK

When the network starts experiencing synchrony issues, the optimistic path might get stuck and nodes 
running xxBFT need to activate the fallback procedure. The transition from optimism to pessimism needs 
to be carefully designed in order to maintain safety. Furthermore, this transition mechanism should 
accommodate a variety of scenarios that can cause the optimistic path to halt at the different phases of 
the algorithm. Without loss of generality we assume that the transition mechanism is part of the fallback 
procedure. While the optimistic path can only decide on a block proposal, depending on the situation, the 
fallback might lead to an empty block instead.

▷ EMPTY BLOCK

3

The empty block is a different type of block than the one proposed by a BP during the regular operation of 
consensus. It contains no information but still has a block header, which includes a fresh network random 
that is computed by hashing the previous network random. This way, the empty block is deterministic, 
which allows the utilization of a leader-less algorithm, simplifying the overall design of the fallback 
mechanism. The empty block structure can be seen in Figure 2.

The fallback procedure of xxBFT is divided into two paths, one that results in an empty block, and another 
that commits a block proposed by the leader of the consensus round. We call these the empty block path 
and non-optimistic block path. Nodes can enter the fallback mechanism at either path, depending on the 
situation. Both paths are designed in the same way, using two phases of endorsement, where the whole 
network is required to participate in order to reach a decision. The two phases draw from classical BFT 
algorithms, where nodes start by gossiping prepare signatures to each other. Once a node receives a 
quorum of 2 + 1 prepares from the network, it will form a prepareQC . This signifies that a majority of
the network is ready to agree on the block, allowing the node to broadcast a commit signature. This is an
actual full quantum-secure signature, as opposed to the commit endorsement sent by endorsers in the
optimistic path. Finally, when a node receives 2

3 + 1 commits from the network, it forms a commitQC and
commits either the proposed block or an empty block, depending on the path it has followed.

While waiting for a prepareQC in the empty block path, nodes can ”change their mind” if they receive
the block proposal, send out a prepare signature on the block, and then wait for a prepareQC certifying
the block proposal. This connection between both paths of the fallback procedure might improve latency
in some scenarios. For example, if 2

3 of the network is waiting for the last signature needed to form a
prepareQC for theblockproposal, a node that switches paths allows thenetwork tofinallymakeprogress.

Conversely, if a majority of the network is already prepared to commit an empty block, nodes that are
waiting for a prepareQC on the block proposal can move back to the empty block path if they receive a
prepareQC for the empty block. However, this case is slightly different, since the node can broadcast a
commit signature for the empty block. In some cases, this signature might be the last needed to have the
network form a commitQC , reaching a final agreement on the empty block.

We now analyze the different scenarios where the fallback procedure is activated, which can happen
during three phases of the optimistic path: propose, confirm and commit.

▷ BYZANTINE BLOCK PRODUCER

We start by examining the situation where the optimistic path gets stuck during the propose phase. This
mighthappen if theBP ismaliciousand is trying todelayconsensus, or if anhonest leader isofflineor faulty.
In these situationswewant tomove to thenext leader as soonaspossiblewhile ensuring that ablock is still
produced. To address this, all nodes have a timeout that is triggered when no block proposal is received
from the current BP in the required time. When this happens, the node enters the fallback procedure via
the empty block path. Eventually, 23 + 1 of the network will timeout, allowing consensus to be reached on
the empty block for the current round.
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▷ BYZANTINE ENDORSERS

In the second situation we examine a possible optimistic path deadlock during the confirm phase. This can
happen if the selected endorser sample contains a large number of malicious nodes, which refuse to send
out their endorsements, and an endorsementQC is never reached. Another timeout is needed to handle
this case, with a longer wait time than the first one. As in the first scenario, when this timeout is triggered,
nodes enter the fallback procedure via the empty block path.

However, malicious endorsers can endorse the block, but then refuse to broadcast their commit
endorsements. This means that the optimistic path can also get stuck during the commit phase. Thus, a
third timeout is needed to make progress, with an even longer wait time than the previous two. In this
case, once the timeout is triggered, the node enters the fallback procedure via the non-optimistic block
path. This is possible since some nodes in the network have an endorsementQC , which is sufficient to
know that the block proposal is valid and all efforts should bemade to commit this block.

One could argue that this third timeout is necessary in the case the described situation happens, but in
practice never occurs. If during the confirm phase an adversary controls all the malicious endorsers and
has the possibility to make the optimistic path fail, then it will never pass on this opportunity and let the
commitphase fail instead. Theblock committedby the fallbackprocedureand theoptimistic pathwouldbe
the same. Hence, the adversary doesn’t gain anything by simply delaying the decision on that block, while
he can instead lead consensus to commit an empty block, causing themost damage to the network.

▷ PARTITION ATTACK

Now, we analyze the impact of a large scale partition attack, executed by an extremely sophisticated
adversary that controls up to 1/3 of the nodes in the network. By allowing only one of the partitions to
receive a block proposal, a second partition will timeout and fallback to the empty block path. This can
cause a consensus deadlock where the two sets of nodes are waiting for commitQCs for both an empty
block and a regular block. If a timeoutwere added to thesewaiting states then itwould be possible for this
adversary to force both an empty block and a regular block to be committed, effectively breaking safety.
This way an alternative solution is required.

▷ BYZANTINE RESYNC PROCEDURE

According to the partial synchrony assumption, the partition attack has to eventually end, allowing the 
network to restore synchrony. Once this happens, nodes will be stuck in the last phases of the two 
different paths of the fallback procedure. However, since all honest nodes can now communicate with 
each other, they can share all information they have about their state and realize that a partition attack 
must have happened. This way nodes can enter a byzantine resync procedure, which is simply a two phase 
full network consensus last effort to commit the block proposal of the current round. An in-depth analysis 
on this partition attack is detailed in Section 5 - Analysis.

▷ ALTERNATIVE FALLBACK

We introduce an alternative approach to the fallback mechanism which achieves linear authenticator
complexity based on a second endorser sample. In the scenario where the optimistic path fails, a second
randomly selected endorser set is chosen to carry out consensus in the same way as the optimistic path.
This endorser set can be computed using a deterministic function or through the use of a cryptographic
sortition mechanism. The latter adds an additional unpredictability layer as it implies that nodes have
some type of secret key which allows them to independently calculate whether or not they have been
selected to be part of the second endorser set. In contrast, the first approach using the deterministic
function, could simply performa random shuffle on the networkmembership list and choose the endorser
set based on the shuffled list. In the event of failure in the second endorser sample, the network keeps
repeating the same procedure, selecting a new endorser set until one is able to reach agreement.
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5 ANALYSIS

In this section we analyze the scalability of xxBFT through the use of an endorser sample, provide the 
safety and liveness trade-offs of the system, and present the performance of the system against different 
worst case scenarios.

COMPLEXITY AND SCALABILITY

In most leader-based BFT-family consensus protocols, the performance metric of interest is authenticator 
complexity. This measures the number of signatures communicated between all nodes during a round of 
consensus. To achieve a scalable decentralized network it is of paramount importance that block finality 
doesn’t increase significantly, otherwise performance will degrade heavily. Since each node has limited 
bandwidth, the overall network bandwidth increases at the same rate as the size of the network. This way, 
it is necessary that the authenticator complexity scales at the same or a lower rate.

The xxBFT consensus has four major communication phases, which we analyze in order to demonstrate 
how linear authenticator complexity is achieved, considering that the endorser set size E is kept constant, 
while the network N grows in size.

Communications
Phase

Number of Communications
Size of Each

Communication
Total Authenticator

Complexity

BP gossips block to
Network

1 toN ⇒ O(N ) Constant = 1 O(N )

BP gossips
stateUpdate to

Network
1 toN ⇒ O(N )

Bounded by
transactionBatch = 1

O(N )

BP gossips
transactionBatch

to Endorsers
1 toE ⇒ O(E)

Bounded by
transactionBatch = 1

O(E)

Total Complexity
O(N +N + E) =

O(N )

Table 1: BP gossips the block, stateUpdate, and transactionBatch

Communications
Phase

Number of Communications
Size of Each

Communication
Total Authenticator

Complexity

Endorsers gossip
endorsement to

Network
E toN ⇒ O(E · N ) Constant = 1 O(E · N )

Total Complexity O(N )

Table 2: Endorsers gossip endorsement to the Network

Communications
Phase

Number of Communications
Size of Each

Communication
Total Authenticator

Complexity

Network gossip
confirm to the
Endorsers

E toN ⇒ O(E · N ) Constant = 1 O(E · N )

Total Complexity O(N )

Table 3: Network gossips confirm to the Endorsers
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Communications
Phase

Number of Communications
Size of Each

Communication
Total Authenticator

Complexity

Endorsers gossip
commit to
Network

N toE ⇒ O(E · N ) Constant = 1 O(E · N )

Total Complexity O(N )

Table 4: Endorsers gossip commit to the Network

As seen in Table 1, 2, 3 and 4, endorser nodes send a constant number of signatures, but are the only 
ones that receive signatures from the whole network. This means that the authenticator complexity 
of endorsers is linear. On another hand, since the endorser set size is constant, all other nodes in the 
network only need to receive and send a constant number of signatures, achieving constant authenticator 
complexity. When analysing complexity, the worst case always prevails, resulting in theoretical linear 
authenticator complexity for the optimistic path of xxBFT. However, in practical terms, the constant 
authenticator complexity of the majority of the network results in good scalability. This suggests that 
xxBFT scales sub-linearly if the nodes, when selected to be endorsers, have the bandwidth necessary to 
support receiving signatures from the whole network. Theoretical simulations have supported this claim 
showing that increasing the size of the network from 100 to 100, 000 nodes results in an increase in block 
confirmation time of less than two seconds.

xxBFT PROPERTIES ANALYSIS

From previous work on BFT consensus algorithms, we know that the safety, liveness and validity 
properties are always guaranteed if up to 1/3 of the network is byzantine. However, this only applies 
when all nodes in the network participate in consensus.

▷ ENDORSER SAMPLING: A NUMBERS GAME

Whena sample is selected from thenetwork to endorseblocks, it is important to analyse the impact on the
safety, liveness, and validity properties of the system. In order to provide confidence in the xx blockchain,
the xxBFT consensus algorithm parameters should be selected in an optimal way, while keeping the
probability of breaking these properties negligible.

When sampling is performed, and since xxBFT is an egalitarian algorithm, all nodes have equal probability
of being selected to be an endorser. Let the following parameters be defined:

• N , the size of the network
• E, the size of the endorser set (sample)
• q, the quorum fraction of endorsements needed to approve a block
• h, the fraction of honest nodes in the network
• X , the random variable counting the number of honest nodes sampled

Endorserselection iseffectivelyarandomsampleof thenetworkwithmultipledraws,without replacement,
i.e., fromN , we choose E nodes, where each can only be selected one time. This means that the random
variableX follows a hypergeometric distribution, with the probability mass function given by:

P (X = k) =

(
h·N
k

)
×
(
(1−h)·N
E−k

)(N
E

)
In order to break safety, it is sufficient that malicious endorsers can convince two disjoint sets of honest
endorsers to acceptdifferentblocks (maliciousnodes canendorsebothblocks). This canbeachievedbyan
adversary thatcanexecuteapartitionattack,where the twosetsofhonestendorserscannotcommunicate
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with each other.

Let the number of honest nodes in an endorser set be G, and the number of malicious nodes B. We can
calculate the point of failure, i.e., when safety is broken, for a given endorser set using the following
equations:

E = G + B ; q · E = B +
G
2

Solving for G in terms of q and E, we compute the point of failure as G = 2 · (1 − q) · E. This means that
the probability of safety failure due to endorser sampling can be computed by the cumulative distribution
function (CDF) of the random variableX , evaluated at the point of failure:

Psf = CDFX (2 · (1− q) · E) =

2·(1−q)·E∑
k=0

(
h·N
k

)
×
(
(1−h)·N
E−k

)(N
E

)
In order to break liveness, it is sufficient that malicious nodes refuse to endorse any block, leading
consensus to halt for the duration of the round. This means that the probability of liveness failure can be
calculated in the sameway as the probability of safety failure, simply computing the hypergeometric CDF
at G = q · E − 1:

Plf = CDFX (q · E − 1) =

q·E−1∑
k=0

(
h·N
k

)
×
(
(1−h)·N
E−k

)(N
E

)
In order to break validity, it is necessary thatmalicious endorsers can form a quorumwithout needing any
endorsements from honest nodes. If this happens, they can effectively convince any node in the network
that a batch of transactions is valid. The probability of validity failure can also be computed using the
hypergeometric CDF, evaluating it at G = (1− q) · E:

Pvf = CDFX ((1− q) · E) =

(1−q)·E∑
k=0

(
h·N
k

)
×
(
(1−h)·N
E−k

)(N
E

)
▷ THE SAFETY / LIVENESS TRADE-OFF

CAP theorem [10] is a well known result stating that a consensus algorithm cannot guarantee both safety 
and liveness during periods of asynchrony in a distributed network. This means that when there is a 
partition of the network, a consensus algorithm design should prioritise one of safety or liveness. BFT 
algorithms tend to prioritise safety, meaning they only guarantee progress (liveness) during periods of 
partial synchrony, but they hold safety while the network is asynchronous, never allowing forks to occur. 
Bitcoin’s Proof-of-Work (PoW) based consensus is an example of the opposite: liveness is prioritised, as 
progress can be made even during a network partition, by allowing forks. This means that safety, in the 
classical sense, is not held, since different nodes commit different blocks at the same height. Any forks are 
then resolved with an extra protocol, which in the case of Bitcoin is as simple as the longest chain wins, 
since that will be the chain with the largest amount of work performed.
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▷ SAFETY ANALYSIS

The xxBFT consensus algorithm, like many others in the BFT family, prioritises safety over liveness,
meaning that safety needs to hold at all times, in order to not have to deal with forks in the blockchain.
By employing endorser sampling it becomes difficult to avoid forks, since in order to make the safety
failure probability negligible, liveness needs to be sacrificed. However, this trade-off is only relevant if the
consensus algorithm is confined to the sample, without any participation from the rest of the network.
This provides themotivation for including a consensus phasewhere full network participation is required.

xxBFT operates an optimistic path with three endorsement phases: validate, confirm and commit. During
the validate phase, endorser nodes send a block endorsement to the entire network. A node will then
enter the confirm phase once it has seen a quorum of endorsements. It will then send back a block
confirmation signature to the endorsers. Finally, endorser nodes that have seen a network majority of
block confirmation signatures will enter the commit phase. Endorsers then send a block commit signature
to every node in the network, which upon seeing a quorum of commits will accept the block as final.

We now analyse the behavior of xxBFT when a full network partition is in effect. Without loss of
generality, we can assume that all the honest endorsers are evenly distributed between both network
partitions. A malicious BP can create two valid blocks and send one to each partition. Both partitions will
be able to successfully complete the validate phase, since it is very easy to obtain two quorums by having
malicious endorsers sign both blocks. However, only one of the partitions will contain a networkmajority,
meaning that it will also complete the confirm phase. Honest endorsers in the other partition will never
see amajority of confirm signatures, so they will never send out a commit signature.

If malicious endorsers don’t send out their commit signatures, both partitionswill experience a timeout of
the optimistic path, and start executing a full network twophaseBFT consensus to try and commit the two
different blocks. However, only one partition has a network majority, ensuring only one of the blocks can
reach finality. If malicious nodes in the network don’t send their signatures, consensus in both partitions
will get stuck, until the partition is gone. But, when this happens, all honest nodes in the networkwill have
enough proof that the BP tried to create a fork and he can be expelled from the network.

This analysis proves that the confirm phase ensures safety is always preserved in xxBFT, if and only if the
endorserswait for a networkmajority of confirm signatures. Thismajority quorum is 2/3+1 for the classic
BFT assumption of up to 1/3 byzantine nodes in the network. The quorum can be reduced if the byzantine
nodes assumption is relaxed.

▷ LIVENESS ANALYSIS

Most BFT consensus algorithms include the concept of a view change, which happens when a leader is
not able to drive consensus in a round, and nodes move to the next round, or view. This can happen, for
example, if the leader ismalicious and simply doesn’t propose ablock, or due tonetwork asynchrony. Since
there is a rotating leader in all of these BFT consensus algorithms, when a view change happens, a new
leader will attempt to drive consensus to an agreement. View change is sufficient in order to preserve
liveness, as it guarantees that, under partial synchrony, eventually a correct leader will be able to drive
consensus to a decision.

In the xxBFT consensus algorithm there is no view change, meaning that rounds are never skipped, and a
block is committed for every round. Instead,wehave the concept of an emptyblock,whichdoesn’t contain
transactions, and is deterministic, meaning that no leader is needed to drive a round that produces an
empty block. In order to agree on an empty block, a two phase full network BFT consensus in necessary.

When a node reaches a timeout, instead of doing a view change, it will broadcast a prepare signature on
the empty block. When a node sees a majority of prepare signatures it can form a prepareQC for the
empty block, and it will broadcast a commit empty block signature. If enough nodes timeout, eventually a
commitQC is formed and the empty block is committed for that round.

Under partial synchrony, the empty block guarantees liveness is not violated since eventually an honest
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nodewill beselectedtobeBPandwill beable todriveconsensus tocommitablockcontaining transactions,
instead of an empty block.

However, if the network is asynchronous due to an active partition attack by an adversary, there is a
possibility that nodeswill be stuck in different consensus stateswhen partial synchrony is restored, which
could violate liveness.

▷ WORST CASE PARTITION ATTACK

We will first describe how this attack occurs and then explain how the byzantine resync procedure
prevents consensus from halting, meaning that liveness is guaranteed.

To execute this attack, an adversary needs to partition the network in two disjoint sets of honest nodes,
each containing 1/3 of the total number of nodes. Without loss of generality, we require that one of the
partitionscontainsanhonestBPandenoughhonestendorsers inorder to formaquorum. Let thispartition
be setB. The last remaininghonest node, nodeC, needs tobeable to receive communications fromtheother
partition, setA, but not be allowed to sendmessages to any other honest nodes.

With this attack in place, setB will see the block proposal, a quorum of endorsements for that proposal,
but not enough endorser commit signatures, meaning that nodes in setBwill enter the fallback procedure
via the non-optimistic block path. They broadcast a prepare signature for the block, with all nodes in
setB seeing 1/3 of those signatures, and being stuck waiting for a majority. Meanwhile, setA and nodeC
will timeout, broadcasting a prepare signature for the empty block. Nodes in setAwill see 1/3 of prepare
signatures but nodeC sees 1/3+1, since only outbound communications from nodeC are blocked. At this
point in time, all byzantine nodes, which account to the remaining 1/3 of the network, send a prepare

signature for the empty block to nodeC, allowing it to form a prepareQC . Then, nodeC will broadcast a
commit signature for the empty block, which is not received by any other honest nodes, and will be stuck
waiting for a network commitQC for the empty block.

Now, the adversary stops the network partition, allowing setA and setB to communicate again, but keeping
nodeC partitioned. Nodes in setA will receive the block proposal and endorsementQC from setB, which
allows them tomove to the non-optimistic block path, sending a prepare signature for the block. This way,
at this point in time, 2/3 honest nodes are one extra signature away from forming a prepareQC for the
block. This signature is sent by one of the byzantine nodes, allowing 2/3 honest nodes to make progress,
broadcast commit signatures for the block, and getting stuck waiting for a network commitQC for the
block, still only needing one extra signature.

Finally, the adversary allows nodeC to communicate with the rest of the network, technically meaning
that partial synchrony has been restored. Now, 2/3 honest nodes and nodeC have conflicting prepareQC

signatures for an empty block and a regular block, meaning that at least one byzantine node must have
signed two distinct prepare signatures. However, 1/3 honest nodes have also signed twice, since they
entered the fallback procedure via the empty block path and then moved to the non-optimistic block
path. This means that, while there is no way to pinpoint anymalicious nodes during this attack, it is highly
likely that all honest nodes will know that some active attack took place. This allows nodes to enter
the byzantine resync procedure, which is a last resort effort to commit a block with transactions. This
procedure is a two phase network wide consensus, which from the BFT assumption ensures liveness is
guaranteed.

▷ IMPACT OF ENDORSER SAMPLING

While endorser samplingdoesn’t directly compromise liveness, it does affect howoftena consensus round
fails, producinganemptyblock. Evenduringperiodsofperfectnetwork synchrony, anhonestBPmightnot
be able to drive consensus to commit a regular block. If the selected endorser sample doesn’t have enough
honest nodes validating transactions and endorsing the block, the endorsement phase will fail, causing
nodes in the network to enter the fallback procedure and start trying to reach consensus on an empty
block.
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▷ VALIDITY ANALYSIS

Traditionally, in most BFT consensus algorithms and blockchain platforms, every node in the network has
access to all transactions, as these are shared via amempool or other kind of gossip protocols. Thismeans
that when a block is proposed containing a batch of transactions, every node in the network will validate
all of them against their local record of transactions, before accepting that block. Even in protocols that
have a subset of the network endorsing a block, this still applies, as everyone has the transactions. This
means that on these platforms validity failure is never an issue.

On the other hand, in xxBFT, the batch of transactions is only sent to the endorser sample, meaning that
there is always a probability of validity failure. We will analyze how to minimize this probability in order
tomake it negligible, ensuring that in practice a bad transaction will never be accepted.

As previously mentioned, when an endorser sample is taken from the network, there will be a probability
that enough malicious nodes are selected and can form an endorsement quorum. If this happens, validity
is broken, since the quorum of malicious nodes can endorse a block with any fake/bad transactions,
which other nodes in the network will accept as valid. Furthermore, this can only happen if the BP is also
malicious, as an honest BPwould correctly not include any bad transactions in its block proposal.

An adversary aiming to break validity will need to carry out an active attack. First, the adversary needs to
wait for a favorable endorser sample that contains a quorum of malicious nodes, and also be in control
of the BP of the given round, so that bad transactions can be included in the block. Then, he needs to
fully partition all the honest endorsers from the network, so that they don’t receive any transactions. This
is needed since, otherwise, any honest endorser would have proof that malicious endorsers and the BP
signed a block containing bad transactions, which is sufficient to have them expelled from the network.

The probability of breaking validity is directly influenced by the size of the endorser sample, the quorum
needed to accept an endorsement as valid, and the percentage of byzantine nodes in the network.
Relaxing the byzantine nodes assumption from 1/3 to a smaller value will decrease the probability of
breaking validity. However, in order to stay in line with other BFT consensus algorithms, wemaintain the
1/3 byzantine nodes assumption. Selecting a larger endorser sample will lead to a smaller probability of
breaking safety, as will increasing the quorum. However, these increases negatively impact performance
and liveness of the network. A larger endorser sample will decrease performance, as it will take longer to
send a transaction batch tomore endorsers, and a higher quorumneeded to approve a blockwill decrease
liveness in perfect network synchrony. In the next section we will analyze how to make validity failures
negligible, while maintaining good performance and liveness.

▷ IMPLEMENTATION PARAMETERS

Wenowchooseparameters for xxBFTandcalculate theprobabilitiesof livenessandvalidity failures. First,
wedefine the network size as being arbitrarily large, allowing us to upper boundprobabilities of failure for
endorser sampling. This upper boundexists since thehypergeometric distribution asymptotically tends to
the binomial distribution when the network size is much larger than the endorser sample. In practice we
setN to 10million nodes, which is much larger than any sensible value ofE.

Then, we use the standard BFT assumption for the number of honest nodes in the network, meaning that
h is 2/3. After running various simulations we believe that acceptable values for the endorser sample and
quorum percentage have been achieved: E = 200 and q = 0.60.

In order to better represent the validity failure probability, wewill use theMean Time To Failure (MTTF )
metric, which can be calculated in years as:

MTTF =
Bt

3.154× 107 × Pvf

where,Bt is the expected block size in seconds, which we conservatively set to 2.
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With the chosen parameters and computing the expressions presented in previous sections, we achieve a
probability of validity failure of 3.7129x10-15, which is equivalent to aMTTF of around 17million years.
In terms of liveness failure, the probability of endorser sampling causing an empty block under perfect
network synchrony is approximately 2%. As previously analyzed, endorser sampling has no negative
impact on safety.
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6 NETWORK INITIALIZATION

We introduce a setup phase for a quantum-secure blockchain platform. The goal of this protocol is to 
produce a Genesis Block containing the list of network members, the initial random seed, and monetary 
value in the system. The described setup must eliminate the possibility of eavesdropping or tampering, 
even by a quantum-capable adversary.

NODE PLACARDS

Nodes involved in the setup phase create a set of values and organize them in a hash tree called the Placard 
Tree. This tree’s root is the node’s identifier (or pseudonym) in the network.

The placard tree values of each individual node comprises the following branches:

• Random Seed: individual value to be used for the Decentralized RandomNumber Generation.
• RandomValues: set of random bit strings to be revealed throughout the operation of the platform.
Nodes should reveal one of these values every round they are selected to be a Block Producer.

• WOTS+SigningKeys: to ensurequantum-securityof theplatform, nodesusehash-based signatures
to sign every block they should endorse.

DECENTRALIZED RANDOM NUMBER GENERATION

To securely create a random seed for the system, each node provides their individual contribution by 
opening their individual commit. Nodes who fail to do so are ejected from the network. Once this reveal 
process is completed, the random number generation is finalized. The resulting seed should serve as a 
reliable and trusted RNG. For further protection, one may add a cryptographic wrapper [1] to reduce the 
impact of untrusted randomness. This way, nodes attempting to influence the random number generation 
by revealing malicious values see their efforts fail as the wrapper mitigates this problem.

GENESIS BLOCK

After the system random is generated, nodes proceed to sign the genesis block. The process is considered 
complete when at least 2f + 1 of nodes publish their signatures (which can also take place during a specific 
timeline). The Genesis Block should contain the random seed associated with the setup phase, along 
with the list of all token addresses (quantum-secure public keys), and a network signature attesting to 
the integrity of the block data. Once the network obtains this final signature on the Genesis block, the 
network initialization is officially completed.

PHYSICAL EVENT DETAILS

Network initialization can be performed as a physical event, where participants must be able to physically 
open a digital commit (e.g., by showing a QR code containing the value that was committed to) and sign a 
genesis block. One way to do this is through the use of a table with specially allocated slots for each of the 
signers.

At arrival, participants prepare their corresponding random value contribution and place it in a verifiable 
and transparent container so that everyone can check their elements are properly stored. Nodes, during 
the random number generation phase, securely place a card containing a QR code with their corresponding 
random value. Once the process is completed, the cards can be flipped in a secure and verifiable way such 
that the final network random cannot be tampered with. To sign the Genesis block, nodes can follow the 
same procedure and use the same slots to place their signature bits.

SUMMARY

This section introduced a mechanism to initialize a quantum-secure blockchain platform. If desired, 
potential nodes can perform the network initialization in the form of an in-person event, following the 
sequence of steps described above along with a possible symmetric key establishment to introduce 
confidential channels in the network, thus limiting the power of the adversary.
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7 RELATED WORK

Although the seminal paper on Bitcoin appeared in 2008, most of the underlying technological ideas have 
been present both in the cryptography and distributed systems fields many years earlier.

Proof-of-Work (PoW) is usually associated with Dwork and Naor [8] because of their proof-of-
computation design to fight junk mail in 1992. However, the term was formally introduced in [12] and 
the first proposal involving proof of computational work dates back to the early 70s. In 1974, Ralph 
Merkle [15] introduced a public-key cryptosystem where a receiving party must perform a certain 
amount of computational work to prove that it found a solution to a cryptographic puzzle.

In 1979, Chaum [2] introduced a design where multiple suspicious parties are able to securely establish a 
distributed system capable of collectively agreeing on incoming transactions. Since the network 
membership set is known, this can be considered the first permissioned blockchain design since in 
every round, nodes maintain a hash chain that contains all the previous consensus states, thus creating a 
distributed chain of records.

Byzantine Consensus ensures that a distributed system is able to agree on a specific set and order of 
transactions to be processed even in the presence of network failures where certain network nodes may 
arbitrarily fail or provide conflicting information to different parts of the network. Protocols of this type 
are called Byzatine Fault Tolerant (BFT) and most of them can only tolerate up to 1/3 of byzantine failures 
in the network, as proven in [17].

Digital cash, created by Chaum [5], introduced the idea of digital coins that relied on public-key 
cryptography [3] for security. In this system, randomly generated serial numbers signed by the private 
key of a central authority (e.g., bank) could be spent in a private manner. An important result that derived 
from this work is the notion of Double Spending [4], where users attempt to spend the same digital money 
more than once. This is now a core concept behind any platform that deals with digital money.

More than two decades later, Nakamoto [16] introduced Bitcoin, a cryptocurrency that relies on PoW to 
maintain a decentralized ledger. In contrast with other distributed systems, Bitcoin nodes are able to join 
or leave the network at will and do not require knowledge of the membership set, thus making it the first 
permissionless blockchain. However, this feature results in a change of paradigm in the distributed 
systems realm: safety changes from deterministic to probabilistic. As a result, when transacting in the 
network, users should typically wait 4-6 blocks until considering a transaction final.

PoW poses as an effective Sybil resistance [6] mechanism against attackers attempting to create 
multiple identities in the network. Platforms like Bitcoin, require network participants to perform a 
significant amount of computational work. Therefore, attempting to perform substantial computational 
work under different pseudonyms at the same time quickly turns out to be a very expensive attack.

To avoid high energy consumption from the constantly used computational power of the network and to 
provide faster finality, blockchain platforms such as [9][14][13] rely on Proof-of-Stake (PoS) instead. PoS 
implies that the more monetary value users have in the system, the more influence they have on the 
consensus protocol, which implies that theoretically, an attacker must spend a significant amount of 
money to initiate an attack at a scale large enough to maliciously influence the consensus.

Algorand [9] is a PoS system that introduces a novel consensus protocol that uses a random sample of the 
network to reach a faster agreement on new blocks. Unlike most PoS platforms, Algorand’s consensus 
protocol does not employ a slashing mechanism where nodes, if caught performing malicious actions in 
the network, see their stake slashed.
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APPENDIX

A. xxBFT PSEUDO CODE

Algorithm 1 - Consensus Optimistic Path

1: for all rounds do
▷Propose phase

2: as a Block Producer
3: Build block
4: Send stateUpdate to Network
5: Send block to Network
6: Send stateUpdate+ transactionBatch to Endorsers
7: as all Network
8: Wait block
9: as the next BP

10: Decode transactionBatch
11: Wait block

12: ifNetwork does not receive block then
13: Consensus Fallback Empty Block Path
14: end if

▷Validate phase
15: as a Block Producer
16: Send stateUpdate+ transactionBatch to Endorsers
17: Send stateUpdate to Network
18: as an Endorser
19: Wait stateUpdate+ transactionBatch
20: Decode transactionBatch
21: Validate stateUpdate
22: Send blockEndorsement to Network
23: as all Network
24: Wait stateUpdate
25: Wait blockEndorsementQC
26: as the next BP
27: Decode transactionBatch
28: Wait stateUpdate

29: ifNetwork does not receive blockEndorsementQC then
30: Consensus Fallback Empty Block Path
31: end if
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▷Confirm phase
32: as an Endorser
33: Wait 2/3 + 1 of blockConfirmation
34: as all Network
35: Send blockConfirmation to Endorsers
36: as the next BP
37: Build nextTransactionBatch + nextStateUpdate

▷Commit phase
38: as an Endorser
39: Send blockCommitment to Network
40: as all Network
41: Wait blockCommitmentQC
42: Commit block
43: as the next BP
44: Build nextTransactionBatch + nextStateUpdate

45: ifNetwork does not receive blockCommitmentQC then
46: Consensus Fallback Non-optimistic Block Path
47: end if

48: end for

Algorithm 2 - Consensus Fallback Empty Block Path

1: for all rounds do
▷Confirm phase

2: as all Network
3: Send emptyBlockConfirmation to Network
4: Wait emptyBlockConfirmationQC
5: as the next BP
6: Decode transactionBatch

▷Commit phase
7: as all Network
8: Send emptyBlockCommitment to Network
9: Wait emptyBlockCommitmentQC

10: Commit EmptyBlock
11: as the next BP
12: Build nextTransactionBatch + nextStateUpdate
13: end for
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Algorithm 3 - Consensus Fallback Non-optimistic Block Path

1: for all rounds do
▷Confirm phase

2: as all Network
3: Send blockConfirmation to Network
4: Wait blockConfirmationQC
5: as the next BP
6: Decode transactionBatch

▷Commit phase
7: as all Network
8: Send blockCommitment to Network
9: Wait blockCommitmentQC

10: Commit Block
11: end for
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B. xxBFT FLOWCHART

Figure 4: xx BFT Flowchart
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C. xxBFT STATE MACHINE DIAGRAMS

Figure 5: BP StateMachine

Figure 6: Endorser StateMachine

Figure 7: Network StateMachine
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